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I. INTRODUCTION

Estimation of a density function has drawn considerable attention in

the literature over the last two decades. Examples of practical situations

calling for the estimation of a density can be found in the works of several

authors, e.g., Murthy (1965), Singh (1977b), Liang and Krishnaiah (1985),

among others.

In one of the pioneering papers on the problem of non-parametric

estimation of a continuous density, a very useful and rather disappointing

observation was made by Rosenblatt (1956). According to this observation,

any reasonable estimator of a continuous density cannot be unbiased.

Therefore, any attempt to improve upon the bias, M.S.E., or rates of con-

vergence involved In the asymptotics, becomes a desirable exercise. The

work reported here Is an attempt in this direction.

While treating an inference problem relating to a variate Y, a

possible approach to gain in precision is to incorporate a concomittant

random variable X along with Y. A considerable part of statistical

literature has been devoted to this approach. In Section 1 we have proposed

some estimators of a univarlate probability density function f(y) of a

r. v. Y based upon a set of observations taken from a bivarlate joint density

s(x,y) of Y and a suitably chosen concomittant r. v. X, so that

f(y) - B(x,y)dx. The estimators have been constructed using some well

known heuristic methods employed in some known areas of statistics but never

applied in the area of density estimation. Although the asymptotic properties

and rates of convergence of these estimators are the same as those of the

usual estimator which does not depend on the data on X, we give sufficient

U b°.,*.*.'. .b. ...
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conditions on 8 and the marginal densities of Y and X under which

the proposed estimators would perform better than the usual estimators in

the sense of IBiasi and the MSE. The ideas developed here can easily

be extended to the case when Y and X are both multivariate.

Different methods of constructing estimators, apparently none better

than others in a global sense, (Watson (1969), Wegman (1972a),(1972b)),

have appeared in the literature. However, we have adopted the most widely

used Rosenblatt (1956) - Parzen (1962) type Kernel method.

In Section 2, we have also looked into the problem of estimating a

conditional density g(ylx) of a r.v. Y given another r.v. X based on

a set of paired observations on (X,Y) - S(x,y) and a set of additional

observations on X - f(x). This problem without the use of additional data

has been treated by Rosenblatt (1969). We have obtained better approximation

for the variance as compared to Rosenblatt (1969), and have given sufficient

conditions on 8 and f under which the use of additional data on X gives

smaller absolute error and variance (and hence the mean squared error) than

those obtained without using the additional data. These conditions need to

be examined more carefully to ease their accessibility to practical problems.
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*. 1. RATIO TYPE KERNEL ESTIMATORS OF A DENSITY

In order to estimate a continuous density f of a random variable Y,

the design proposed is to sample from a bivariate population (X,Y) S(xy)
where X - *(x) is a suitably chosen concomitant variable such that

f(y) f f(x,y)dx and ,(x) fB(x.y)dy.

We first treat the case when * is a known density. It is possible to

conceive of situations where this may be the case. However, some of the

results obtained under this assumption will be used in treating the other

case when , is unknown.

1.1 THE CASE: , KNOWN

Let (X1,Yi), I 1,2,...,n be a sample a(x,y).

Define

1 n (Yn y

f- ;n ( x ) -- nT il K

n (x = 1=

where 0 < h = h(n) 0 as n - =, and K is a Borel-measurable bounded

function on the real line such that

JK(u)du = 1, u K(u)du = O' U2 K(u) <

f tK(u)1du <, and IuK(u)l -0 as lul -

... . . . . . . . . . . . .
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Throughout the remainder of this, we denote fK2(u)du by L2(K) and

2-1 Ju2K(u)du by- k2.

We propose a ratio type estimator of f(y). For y e Sf a {v: f(v) > 01,

define

R(y) = fn(y)'P(x)/n(X)

where x is a suitably chosen point from S * . The estimator fR is well

defined as it follows from Parzen (1962) that

P[fn(Y)>O] 1, Vy Sf

and

P[4*n(X)>O] 1, Vx E S

as n -- ®.

Let

A

n= {f(y) - Ef (y)){Ef (y))"

and

A

Sn - nx p(){PX}-1

* The estimators f (y) and qn (x) are standrad non-parametric estimators
nn

of the respective densities f and ip based on a technique proposed by

Rosenblatt (1956) and later extended by Parzen (1962) to the now familiar

Kernel method of estimation.
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Now, for the rest of this section, we will assume that

ye Cf i Sf {y: f"(y) Continuousl

and

y C

For simplicity, we will not write the argument of any function, i.e., we

will write * to denote 0(.). Momentarily, we will drop the subscript

n from fn' *n' en and an.

In terms of the r.v.'s e and 6, we have

.f . Ef (Ev)1{(1+c)(1+6)"1

and
2R =  2 (Ef)2(E*)-2{(1+E) 2 (1+6)-2

Ignoring the terms of the order O(nh "3/2  and lower (See Remark 1.1 below)

in the expressions for EfR and EfR, we can writeR R

EfR =' * Ef * (E*)fl{1-E(.S)+E(62 )}
~(1.1)

6 = 2(E )2(E ) 2{1-Ee
2-*E(ca)+3 E 62

}

R

.. . . . . .. '

- 4%°N*
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This gives, again ignoring the terms of the order O(nh) "3/2  and lower,

an approximation for the variance

2(f R) = V2(Ef)2(Ej)'2{ES2-2E(eS)+Ec2} (1.2)

R - 2 212

+ *2(Ef/E*)2{E62-2 E(c6)}

1.1 REMARK

In the approximation (1.1) of EfR, the error of approximation, in

absolute value, is less than EK(1+C)(1+S)-1(-83 )j and

1+e 31 1 E 1 }1/2 26E /

(1+)

where

1+6 = */E = ;(say)n

follows, as n - =, a normal distribution with mean 1 and variance

a 2[;] O(nh) "1 , in fact

a2 N] (hY *(x) f 2 C d
2w]"(nh)- [-E*n 2 K (u)du

(see Parzen (1962)].

........... . .. .. ...

.........
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Consequently,

E(7= E(- II,-1, > ' log nh/VIn)

+ E(: IIl .I - t log nh/v'lW3

(1+.r log nhl,/-F) "2 P (v'n]i I-11 > T log nh)

+ (1-T log nh/,rnW)"2 P (vnIi 1;-11 < T log nh)

= 1 + o(1)

Further, since (1+e) - N(1 , O(nh)" ) and 6 - N(O , O(Nh)'l), it follows

that

(E[(1+E) 2 a6)1/2 =(nh)-3/2

Similarly, it can be shown that the error of approximation (1.1) of

E(f is O(nh) 312.

R..

. . . . . . . . . . . . . . . . . . . . . .

S. . . . . S S S . . . . . . . . ..
o
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It follows from Singh (1977) that

Ef = f + f"k2h +O(h)

E= *, + *"k2h +O(h)

a2(i) = (nh2) [EK2 h"(Y 1-l) -E 2 Kh1 l(Y- 1 (1.3)

= (nh)f1 f L2 (K)

+ n 1 {ffvK2(v)dv.f 1+Onh)

2 - (nh)f1 * L2(k)

+ n-1 {*# fuk2(u)du..*2}+O(n-1h)

Further, since

Cvf, = Inf I Coy (K(h1l(v1 -y)). K(h1l(X j-x)))

n {1[Jk(u)K(v)o(x+hu.y+hv)du d

(1.4)

-(fk(u)w(x+hu)) (vf~y+hv)

=ni{8-.*f)+O(n- h)

provided first order partial derivatives of are continuous at (x,y).

.C... . . . .
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Now we will prove our main theorem:

1.1 THEOREM

For V y e Cf and V x e C such that the first order partial

derivatives of B are continuous at (xy),

f 2 2EfR + h k2(f'-*,"/*) + O(h2 )
2(f R) r 02(j) + A + O(n'1 h) (1.5)

* where

A = n-f 2  {2(f*)-l (B-f*)

" and'2 
2 2)

a(f) as given in (1.3).

PROOF. From (1.3) and (1.4)

Ec2 = c2 (f)(Ef) 2

- 2  {=nh)'IffK2(u)du

+ n-1(f fuK2(u)du-f2) + O(n-lh1

E(62) has a similar expression with f being replaced by ,.

m

. . .. . . . . . . . . . . . . . . . . . . . . . . .

:.. . . . . . -- %..-***:* *~ *- . . . *
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and

E(cS) = (f,)-I n- {S-f,} + O(n1 h).

Now (1.2) and (1.3) followed by the expressions given for Ee2 , Es2

and E(c6) complete the proof of the theorem.

The following corollary is an immediate consequence of Theorem 1.1

1.1 COROLLARY

If JuK 2 (u) = 0 (e.g., uniform or standard normal kernel) then

2(f) (nh)-lf jK2_n-1 f2 + O(n-1),

and
(R) = (nh) 1 f+(f 2/,) K2_2n-1(1+ -! + o(n-1)

1.2 REMARK (COMPARISON OF f WITH THE USUAL ESTIMATOR f)

22
Under the similar conditions, Ef = f + h k2f" + o(h2). Comparing

this with the EfR in (1.5) we see that IBias(fR)i < jBias(f)j if and

only if 0 < (*"/f") < 2*. For example, with f(t) = (t) = (2.ff)-I/ 2exp(-t2/2),

this condition is satisfied if

< +2(y 2-1)f(y) for jyj a 1, and if x> 2(1-y2)f(y) for Iyj 1.

..........................
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Comparing the variances of fR and f, we see that a (fR) < a2(f)

if and only if

h-1 f 2< 2 0 f + (1.7)

Thus, if concomitant variable is chosen in such a way that X and Y

have positive dependence (i.e., P[X<x,Yy) _ P[X<x P[Yy]), all we need

is to choose x and K such that h-1 JK2 < *(x).

If (2*(xly)-*(x)) _> Co(x,y) > 0, where *(xly) is the conditional density

of X at X = x given Y = y, then we can always satisfy (1.7) by choosing

x and K to make h"1 IK2 < Co(xy). Since the choice of X is at our

will, for a given y it may be possible to include a concomitant variable X

in our design and to choose x such that 2*(xly) >
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1.2 THEOREM ASYMPTOTIC NORMALITY

If h2 = o(nh "1/2 , then

(nh)112 (R-f) -I N(O, f 2{f 1+ 1} IK2).

PROOF.

Since E(c6) = O(n1 ) and a2(6) -O(nh) -', we write

fR = (Ef)(E)-I i [1 + - 6 + p (nh)- .

Therefore,

(nh) 2 (ff) = (nh) 112 {(Ef)(Ew)f,-f}

(1.8)
+ (nh)1/2 (Ef)(E;)"1 i (e-4) + 0 (nh)-2

p

From (1.3), (E.- (E;,' - - f)-O(h2 ), the first time on the right hand

side of (1.8) is o(1). Further, since (nh) 1 2 (f-Ef) .Z N(O , f JK2) and

(nh)/2 - N(O , 2 K) by Parzen (1962), and Cov(c,6) =O(n), we

conclude that the second term of the rhs of (1.8) is asymptotically normal

with mean zero and variance (f2)[(f)-1+( 1)-l1 fK2.

The proof of the theorem is now complete.
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1.3 REMARK

In computing the asymptotic variance of (nh)ll2 fR we have ignored

the terns of the order O(h) and lower, and hence the asymptotic variance

of (nh) 1/2 fR turns out to be larger than f JK2 , the asymptotic variance

of (nh) 1/2 f. We have, however, seen through the proof of Theorem 1.1

that if we retain the terms of order O(h) in computing the variance of

(nh)1/2  hssalrvracRI then there exist situations where fR has smaller variance

and MSE compared to those of the usual estimator f.

1.2 THE CASE OF UNKNOWN /.

Since the choice of the concomitant variate X is at our will, we

choose here that concomitant variate X which is extremely cheap to measure

compared to Y variate so that we can have a very large sample on X with

very little extra budget. For example, if Y is some biochemical content

in a plant and X is chosen as the weight of the plant, the above condition

is satisfied.

Let B denote the joint p d f of (X,Y) so that f(y) = B(xy)dx
and V(x) - (x,y)dy. Let Zl,...,Zna be na additional i.i.d. observations

on X, independent of the paired data (Xl)Yl),...(Xn'Yn) " i.i.d. according

to s. We take na  large enough so that (naha = o(n ) where ha = h(na).

Define

"x (naha K(jhx).
a1 aJ l a
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Our proposed estimator of f(y) is

i(Y) - f=iz). *(x)
*(x)

where y e Sf and x e S.. For the sake of simplicity, we will again not

display the arguments in functions like fR(y), f(y), etc.

Since E* = * +O(ha 2), it follows from subsection 1.1 that

EiR(y) E E(Pl) . E(*) = f + O(h2).
R( \ ,(x))

Now we examine the variance of f Since for independent random variables

W and V,

a2(WV) = EW2.EV2 - E2W.E2V

= a2(W)A2(V) + E2(W)a2 (V) + E2(V)a2(W),

we can write with fR as given in subsection 1.1,

a(fR) 12P2(;) + E2(; I)2(* + E 2(M o2

=,R) L- -+ (R + .a(R)

o (nhy1(haha) O(flh 1 +(1+0(h2)) .2

..................................
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Since

a2(fR) =O(nh)"1  a2(*) = O(n ah a) 1 and EfR =f + O(h2 )

Thus, since (naha)'1 = o(nl ), we have

2(fR= + o(n"1) o2(f) + A + o(n" )

where A is as given in Theorem 1.1. Therefore, the conclusion of Remark

1.1 continues to hold.

With regard to the asymptotic distribution of fR' we note that

1.J = *J + Op(naha ) 1/2 = + (n 1/2

Hence

-+ O 1/2 )

R R p
and

(nh) 2(f-f) D (nh)l/2(fR-f) -NO f2{f'+.[1JK2)

from Theorem 1.2

1.4 REMARK REGRESSION TYPE DENSITY ESTIMATORS

We propose a linear regression type density estimator of f as

flr(Y)= f(y) - b *(x) - *(x

* Then

Efir f + h h2 (fII(y) -b*(x + o(h2
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and A

a0fr) f- a (y)) + b2 ()) 2bCv 0Ty) N

where f2(f) , a2(;) and Cov(f , ;5 are as given in (1.3) and (1.4).

Thus

• a2(lr) < f (

if and only if

b2 < 2b Coy y ;(J
2 ((x)

- 2b of). hI0+2 _,2

2. ESTIMATION OF A CONDITIONAL DENSITY

Let g(ylx) = B(x,y)/f(x) be the conditional density of YJX =x,

where the couple (X,Y) - o(x,y) , X - f(x) O f8(x,y)dy and f(x) > o.

Rosenblatt (1969) treats the problem of estimating g on the basis

of a random sample (Xl,Yl),...,9(XncYnc from the joint distribution of
Cc

(X,Y). We are also going to estimate g but under a data set up which is

slightly more general. In addition to nc paired observations (Xi,Yi)'s

we also have additional data on X, i.e., a sample from the univariate

distribution of X,

U1, U2 ,..., Una .

Set

N =n + na
...
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and

X for j - 1,2,...,nc
zj

V UJnc for j - nc+l,.,N

Let h(t) be a positive function such that

h(t) + 0 and th2(t)4

as t -. Set

i= hc =h(nc),

h = h(nc+na)

and note that, as nc  ,

2hc +0, h 0, nch and Nh m.

Further, let B(uv) be a Borel measurable bounded function defined

on R such that as

II(u,v)II - IIu,v)H IB(u,v)I o.

We also assume that

If IB(uv)ldu dv <

.B(u,v)du dv - 1,

* .o
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and

* ffuB(u~v)du dv = o *JvB(u~v)du dv

Also, let K be Borel-measurable bounded function defined on the real line

such that

lim IuK(uJ o,

JIK(u)tdu < - K(u)du a 1 , uK(u) o

and

J uK(u)du < -

Having chosen the weight functions B and K and the sequence of bandwidths

{h(n)l, we propose the following estimator for g(yjx) at a point of

continuity (xy) of o(xy) such that f(x) > o.

Define

gAS~~x) n c(x-y) /fN(x)

with

Nx)= (Nh)1i J K (h-'(Z x)

and
n

~~nc ~2)- ,y = nhV j1Bh'(Xf-x), h-'(Yj-y))
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2.1 REMARK

It follows from Parzen (1962), that if f(x) > o, then

P fN W)> 0] * 1 and P[f n(X) > o] * 1. Therefore, 9AS is well-defined

in probability.

2.2 REMARK

When there is no additional data, i.e., the case when ha  0 , gAS

reduces to the estimator studied by Rosenblatt (1969);

g(ylx) on (X.y) / Wn(x)
C C

where nc

f (x) (n I K 1h(X-x))cc c J- \c i

It is well known, (e.g., Rosenblatt (1956) and Cacoullos (1966)), that

fN(x) as an estimator of f(x) and n c(x,y) as that of o(xy) are

consistent in quadratic mean. Intuitively, we expect gA5 to estimate g

consistently. We prove this and other results in the remainder of this

section.

As before, for the remainder of Section 2, we will not display the

arguments In the functions defined above.

.......................... *.** . .

.....

.* . . . . .%* * * * 4 . -.
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2.1 ASYMPTOTIC APPROXIMATIONS FOR BIAS; VARIANCE, AND THE DISTRIBUTION
OF g 1.

9AS(LL

In this section we show that 9AS as an estimator of g is asymptotically

unbiased, consistent in quadratic mean and asymptotically normal just like the

usual estimators of g(ylx) proposed by Rosenblatt (1969), which are based

on only paired observations. Approximation for the bias and variance obtained

here for gAS" specialized to the Rosenblatt's case (i.e., when na = 0),

are better than those noted in Rosenblatt (1969). We further give sufficient

conditions on a and f under which the absolute bias and variance of
~A

gAS are smaller than those for g obtained by Rosenblatt.

Although we have investigated the asymptotic properties with na

we have observed (though not reported here), through Monte-Carlo simulation

that for nc fixed the estimators gAs(Ylx) proposed here have in some

cases smaller mean squared error than the usual estimators.

It is well known (e.g., Singh (1977)), that if fP, the second derivative

of f, is continuous at x, then with 11(X) = f"(x)fu2K(u)du / 2 and

L2 (K) = JK2(u)du, we have

= 2 2
Ef N f + h 11 + o(h2)

E =f + h1 + o(h)

2 -c1 1(2.0)
a (fN) = (Nh) 1 f L2(K) + o(Nh) 1

fnc (ncc 1)- f L2(K) + o(nchc)'
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and with

a2xy 2 S(,) ju 2B(uv) a 2 J(X) v2 B(u,v)du dv

and

L (B) B f 2 (u~v)du dv,

Choosing B in such a way that ffuB(uv)du dv = 0

= JvB(uv)du dv, we obtain from Rosenblatt (1969) and the techniques used

in Theorem 1 of Parzen (1962) that

Ea n c c2+O(hC)

n) -(nch c -) BL2(B) + (nchc T . ffuB2(u,v)du dv

+ LO . vB2(u,v)du dv + O(nchc)hd

- 2n 1 + on h
-(nchc )- L2(B) + cc)1

For the rest of this section, put yl(x) = 11(x) / f(x) and

Y2(x,y) = {12(xy) / B(xy) - 11(x) / f(x)}. As with others, the functions

y1 and Y2 will be displayed without their arguments.

Let

(0 n Es n )(ES n-
nc nc

and

S(fN EfN)(EfN ) 1

kr . _ . .. . . . .. . . .. . . ..
I 

I  

I  
I l l ~ l II I  I i i I 

I  
I i 

I  
" 11 I' 1 1 I I I i I i

I 
i
I 

I I I i I i" "i I I II Ii . . .. , . ... . . • . , . , '. , • % % • ." . , o. . %"m% . ='." " • .%. - * -% • . - . .... . • .- % • - '.,% % % % " ".'. ". .,''-.'. ... . .
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Then, in terms of e and 6, we have

gAS = (En c)(EfN) {((1 + 1 + a)-1}. (2.2)

It is well known that e and 6 are 0 p(nchc )-1/2  and 0 p(Nh) 1/2

respectively. Further, these are asymptotically normal random variables

with mean zero and with their variances tending towards zero as n h 2  G
c c

in case of £ and as Nh + ® in case of a. Therefore, it follows that

gAS = (EBn c)(EfN)-1 {1 + 6 - - e6 + 621 + Op(nc h-3/2. (2.3)

Further in view of the comments made in Remark 1.1 of Section 1, it

follows that

EgAS = (EOnc)(EfN)' {1 - E(ca) + E( 2 )) + 0(nch)3/2

and- (2.4)
: and

E(g2s) = (En )2(EfN {1 + ES2  4E(es) + 3E62} + 0(nch)-3/2

With the above observations, we are now able to prove asymptotic

unbiasedness, quadratic mean consistency, and the asymptotic normality of

AgS Throughout the remainder of this section, we assume that hc = h(nc)

is such that xn = hc/h ,x < - and K is such that

K(x u) * K(xu) a.e., in u as n (this is assured if K is continuousc
a.e.). To prove our main results, we make use of the following lemma.

* .*p--*.*

. . . . . . . . . . . . . . *
*.-. * **o~* * * ~ - ~ *.,. ~ ~ > .
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2. 1 LEMMAL

If a is continuous at (x,y), then

Cov(sn c P =N (Nh)'BL,(KB) + o(Nh)f1

where

L (KB) =jB(u~v) K(xu)du dv.

PROOF.

Since (Xj~~,y j 9 ll...,nc are 1.'i.d. and are independent of

COV(Bs *ff~ (n h2Nh)-l I Coy B99 xX

=(NhV1 [Ac- At j

where

A' z h-2CB(-- 1 Y-Y I 1(X 1

and

An 2 =y h2EB(-Xl! 9 yl) EK(--)

Now consider first A~c We can write

JAn -BLX (KB) I yl(x,y,nc) + r 2 (x,yn()

where

Ti(x.Y~n) c If((x h hcu ,y - hcv) B (x.Y)) K(x u)B(u,v)du dvl
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and

y2(~ync) z o(x~y) IJ[K(Aflu) -KMu) B(u,v)du dvi.

Since K is bounded, it follows from Cacoullos (1966) that =jo~)

and since K(x u) +), K(xu), by dominated convergence theorem, y2 is also o(1).n Y
C

Hence, A n c= sL,(KB) + o(1).

Further, from Cacoullos (1966),

EB (.-i 1 Y-iL) h~ 2 (x,y) + o(h 2
c cC

and

EK X-X = hf(x) + o(h).

Therefore, A' = hsf + o(h).

The proof of the lemmna is now complete.

2.1 THEOREM ASYMPTOTIC UNBIASEDNESS

If the second order partial derivatives of are continuous at

(x,y), then

E ~SI (.ylx)) =g(ylx)(h 2 (xy 2 (h 2) Yj(x)

+ (Nh)f1 kW4xI (L (K) L L(BK)} (2.6)

+ o(max fh2 (Nh)-1 ).
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PROOF.

It follows from (2.0) and Lemma 2.1 that

E(e • 6) (ESn) -(EfN)'I Cov(nc fN)
C

= (Nh) 1 f(x) -1 LX(KB) + o(Nh)
-1  (2.7)

This result accompanied by (2.4) and (2.0) gives

1h2c 11h 2
EgAS z[91 1+ o + o(hc)) + o(h))

which finally gives (2.6).

2.2 REMARK

1Notice that if (Nh) = O(h2) , then the bias in Theorem 2.1 is gtien

by

Il(xy)h~ 2 11(x)h 21
E ((yx g(yx) 2(x,y) + o(hc) (2.6)'

The right hand side of this equation with na = o reduces to what Rosenblatt

(1969) has noted for the bias of the estimator -g. Writing (2.6)' as

2
E(gAS(Ylx) - g(ylx = g(ylx) hc Y2(x,y)- (2.6)"

+ g(ylx)(hc - h2) y,(x) + o(h)

we see that the first term on the right hand side of (2.6)" is the bias of

g with no additional data.
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Thus, we conclude the following corollary:

2.1 COROLLARY

Let (Nh)-1 = o(h2). Under the hypothesis of Theorem 2.1,

(bias of gAS(Ylx)( < (bias of g(ylx)j

if and only if Y2(xy) and yj(x) are of opposite signs and

' h2

(1- I<(x)l < 2fY2(x,y)l.

2.2 THEOREM VARIANCE OF gAS

If B is continuous at (xy), then

2 AsYIX) = g(ylx) (xi-1 [(Nh)-g(ylx) (L2(KI_2Lx(K8)

(2.8)
+ (n ch2)'1 L2(8)] + o(max {(Nh5"  (nch

c c L2 8J{Nf 1  ( c~1 )

PROOF.

It follows from (2.4) that

a2 2 iN- n22Ef 2  nch- 3 / 2

02 (AS(YlX = (En (E62 - 2EcS + Ec } + O(n h)

In view of (2.0), (2.1), and (2.7), the right hand side is

Sg2(yx) Nh)"1 (x) {L2(K) - 2LX(KB)S + o(Nh "1

+ (n c hC) (o(x.y)) -1 L2(B) + o(nchc-l

which is the right hand side of (2.8).

This completes the proof of the theorem.

5....>

,m -':: ,--,-- ,. -,, .. .',,.-.".-." ".:. ,"., .',"-,.,'. .. ,'.;'""" . '... ,.' . ,. , 'y ,. ' ,.,,'., '.'. . .. '....:,
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2.3 REMARK

The estimator proposed by Rosenblatt (1969), which is only based on a

set of paired observation, coincides with our estimator in the case n a =0.

However, his approximation to the variance of gzlx) is

(nch )1 g(ylx) L 2( B) / f(x) + onh

which is strictly larger than the approximation obtained by us. For the

case na =0, our approximation for the variance of g(ylx) is

n 2Ig(ylx) L(B - (c)1g 2(ylx) L f(x) +o(nchc-
(n 2) (nh)8)L 2(K)

The following corollary is a consequence of Theorem 2.1 and 2.2.

2.1 COROLLARY QUATRATIC MEAN CONSISTENCY OF -9

Under the conditions of Theorem 2,

MSE [.gAS]

g2 [{(8) 112 h~ - (f)-1 1 h2}

+ (Nh (f)' {L( - 2L (KB)I (2.9)

cn c ) 1 L2(B)

+ o(max {(Nh) 1 ' (hc)

....................
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2.4 REMARK

if o: (maxT(Nh)fl (nOch)- 1) is ignored,

then

MSE 19AS1  = I1 + W

where

4' 2. 2EMAR

W 92 [h4 C + (nhc) (SY1L 2(B)

and

-22 wh2er2e

W2 (h h2) Y2 + 2h' yy

When na =o, the case of no additional data, W2  0 and W is

the MSE of g(ylx), as is also noted by Rosenblatt (1969). Thus, we

have the following corollary.

2.2 COROLLARY

If o maxf(Nhl , (nch 1)) is ignored, then under the hypothesis

of Theorem 2.1

MSE [iAs(YIx,)] <[MSE g(Y~x)i

if y1 and Y2 are of opposite signs, and

h( - h2/hc) fy1(x)( < 2(Y2(xy)l, (2.10)
Ic

The conditions stated in the corollary 2.2, under which one would recommend

the use of additional data, are not of practical utility. They need to be

examined more critically. Our conjecture is that gS will not perform9A

t',-: better than g in the case of strongly dependent variables X and Y.

--L .r , • m - . . .- -,,, l .. f d I ' . n i .-. in•. - - " . . . . . . .
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2.3 THEOREM ASYMPTOTIC NORMALITY OF 9AS-

If (t'h"21/2 = o(h2) and (n N-h2h') 1/2 = 0(1),

then

(n. h V (As(Y(x) - g(yix)) N 0 , g(yjx) (x (2.11)

PROOF.

From our foregoing analysis, it follows that
-( 1/ -1 <2  Op

0(Nh) 2  Op (Nh) and 2= O(Nh) .

p

Therefore, from (2.3), we can write

"(chc)1/2 (gAS" g) " (nch2)i/2 {E ;nc (EfN)'1-gi
C (2.12)

+ ( n h c2 ) 1 / 2  . E c ( E ) 1 + ( 1 )

c c n c fN p~ 1

In view of (2.0) and (2.1), the first term of the right hand side of

(2.12) is o(1). Further, since from Cacoullos (1966),

(n'h2)1/2  . E(;) . N 0 ,L

".-:': ( ch ) n

the second term on the right hand side of (2.12) is asymptotically normal

with mean zero and variance g • (f)'1L2(K). The proof the theorem is

now complete.

C. -

p . t'."*t. * *tC *
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